Proses Pemecahan Masalah Siswa Impulsif pada Materi Program Linier
Abstract
The aim of this research is to describe the problem solving process of impulsive students on linear programs. The subject of this research are 2 students that already learned about linear programs. The problem solving process of impulsive student are: (1) at first, student gathering information, then the information are being translated to mathematics model without making any table, (2) there is no problem modification therefore objective function are incorrect, (3) determining coordinate points to draw graphic and feasible solution, (4) determining intersection using substitution method and elimination method, (5) conducting the corner point method. However, the result are incorrect because objective function are incorrect
References
Askew, M. (2002). Making Connections: Effective Teaching of Numeracy. London: BEAM Education.
Chua, P.H., & Wong, K. Y. (2012). Characteristics of Problem Posing of Grade 9 Student on Geometrics Task. In J. Dindyal, L. P. Cheng & S. F. Ng (Eds.), Mathematics Education: Expanding Horizons (Proceedings of the 35th Annual Conference of the Mathematics Education Research Group of Australasia). Singapore: MERGA.
Dwiyogo, W. D. (2014). Analisis Kebutuhan Pengembangan Model Rancangan Pembelajaran Berbasis Blended Learning (PBBL) untuk Meningkatkan Hasil Belajar Pemecahan Masalah. Jurnal Pendidikan dan Pembelajaran, 21(1), 71-78.
Fadiana, M. (2016). Perbedaan Kemampuan Menyelesaikan Soal Cerita antara Siswa Bergaya Kognitif Reflektif dan Impulsif. Journal of Research and Advances in Mathematics Education 1(1); 79-89.
Fauziah, E. W., Sunardi, & Kristiana, A. I. (2015). Analisis Tingkat Berpikir Kreatif dalam Pengajuan Masalah Matematika Pokok Bahasan Bangun Ruang Sisi Datar Berdasarkan Gaya Kognitif Reflektif-Impulsif Siswa Kelas VIII-F SMP Negeri 12 Jember. Jurnal Edukasi UNEJ, 2(2); 1-6.
Hillier, F. S. & Lieberman, G. J. (1994). Pengantar Riset Operasi. Terjemahan Ellen Gunawan S dan Ardi Wirda Mulia. Jakarta: Erlangga.
Hullfish, H. G. & Smith, P. G. (1978). Reflective Thinking: The Method of Education. Westport, CT: Greenwoods Press.
Hurst, C. (2004). Numeracy in Action: Students Connecting Mathematical Knowledge to a Range of Contexts. Mathematics: Essential Research, Essential Practice, 1(1); 440-449.
Gagne, R. M. (1985). The Condition of Learning and Theory of Instruction. Fourth Edition. New York: Holt, Rinehart, and Winston.
Kagan, J.,& Kogan, N. (1970).Individual Variation in Cognitive Process. In Mussan, P. (Edt.) Carmichael’s Manual of Child Psychology (3rd ed. Vol. 1) Wiley New York.
Kagan, J. (1978). Impulsive and Reflective: Significance of Conceptual Tempo. Krumboltz, J.D. (Edt.) Learning and Educational Process. Chicago: Rand, Nally & Company.
Kozhevnikov, M. (2007). Cognitive Style in the Context of Modern Psychology: Toward an Integrated Framework of Cognitive Style. Psychological Bulletin 133(3); 464-481.
Mousley, J. (2004). An Aspect of Mathematics with Understanding: The Notion of “Connected Knowing”. Proceeding of the 28th Conference of The International, 3(25);377-384.
Nasriadi, A. (2016). Berpikir Reflektif Siswa SMP dalam Memecahkan Masalah Matematika Ditinjau dari Perbedaan Gaya Kognitif. Numeracy: Jurnal Ilmiah Pendidikan Matematika, 3(1);15-26.
Nasution, S. (2008). Berbagai Pendekatan dalam Proses Belajar dan Mengajar. Jakarta: PT Bumi Aksara.
NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.
Olkun, S. (2003). Making Connections: Improving Spatial Abilities with Engineering Drawing Activities. International Journal of Mathematics Teaching and Learning, 1(1); 1-10.
Philip, F. (1997). The Effects of Verbal and Material Rewards and Punisher on The Performance of Impulsive and Reflective Children. Child Study Journal, 7(2);71-78.
Pittalis, M., Christou, C., Mousoulides, N., & Pitta-Pantazi, D. (2004). A Structural Model for Problem Posing. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4; 49-56.
Polya, G. (1973). How to Solve It. Second Edition. New Jersey: Princeton University Press.
Prihastanto, A. R. & Fitriyani, H. (2017). Profil Kemampuan Koneksi Matematis Siswa SMP Bergaya Kognitif Reflektif-Impulsif dalam Menyelesaikan Soal Geografi. Didaktik. 23(2); 89-98.
Rozencwajg, P. & Corroyer, D. (2005). Cognitive Processes in the Reflective-Impulsive Cognitive Style. The Journal of Genetic Psychology 166(4); 451-463.
Santrock, J. W. (2007). Psikologi Perkembangan. Edisi 11 Jilid 1. Jakarta: Erlangga.
Soedjadi, R. (2000). Kiat Pendidikan Matematika di Indonesia. Jakarta: Direktorat Jendral Pendidikan Tinggi, Departemen Pendidikan Nasional.
Syamsuddin, H. (2001). Kesulitan Siswa Kelas V SD Menggunakan Langkah-langkah Penyelesaian Soal Cerita. Tesis tidak diterbitkan. Surabaya: UNESA.
Warli. (2010). Profil Kreativitas Siswa yang Bergaya Kognitif Reflektif dan Siswa yang Bergaya Kognitif Impulsif dalam Memecahkan Masalah Matematika. Desertasi tidak diterbitkan. Surabaya: Pascasarjana UNESA.