Analisis Kestabilan Global dan Analisis Sensitivitas pada Model Matematika Penyebaran Penyakit Gondongan
Abstract
Mumps is a contagious viral disease transmitted through respiratory droplets and close contact. It can cause symptoms like fever and salivary gland swelling. Despite the MMR vaccine, which offers partial protection, outbreaks persist, especially in college-aged individuals. Epidemiological models can aid in identifying effective prevention strategies for controlling mumps transmission. This paper proposes a mathematical model for mumps spread, considering quarantined individuals and complications. A global stability analysis of the mumps transmission model was performed, considering mortality and quarantine subpopulation. The Disease Free Equilibrium and Endemic Equilibrium Point are globally stable, confirmed by Lyapunov functions. Sensitivity analysis of the basic reproduction number shows that reducing birth rates and contact between infected and susceptible individuals effectively minimizes the infected population. However, increasing the natural death rate can reduce the total population, which may lower infections, but poses potential social and economic challenges for decision-makers.
References
Azimaqin, N., Peng, Z., Ren, X., Wei, Y., & Liu, X. (2022). Vaccine failure, seasonality and demographic changes associate with mumps outbreaks in Jiangsu Province, China: Age-structured mathematical modelling study. Journal of Theoretical Biology, 544, 111125. https://doi.org/10.1016/j.jtbi.2022.111125
Badole, M., Bhardwaj, R., Joshi, R., & Konar, P. (2024). Stability analysis of a SIQR epidemic compartmental model with saturated incidence rate, vaccination and elimination strategies. Results in Control and Optimization, 16. https://doi.org/10.1016/j.rico.2024.100459
Bai, Y. zhen, Wang, X. jing, & Guo, S. bai. (2021). Global Stability of a Mumps Transmission Model with Quarantine Measure. Acta Mathematicae Applicatae Sinica, 37(4), 665–672. https://doi.org/10.1007/s10255-021-1035-7
Barua, S., & Dénes, A. (2023). Global dynamics of a compartmental model for the spread of Nipah virus. Heliyon, 9(9), e19682. https://doi.org/10.1016/j.heliyon.2023.e19682
Berhe, H. W., Gebremeskel, A. A., Melese, Z. T., Al-arydah, M., & Gebremichael, A. A. (2024). Modeling and global stability analysis of COVID-19 dynamics with optimal control and cost-effectiveness analysis. Partial Differential Equations in Applied Mathematics, 11(July), 100843. https://doi.org/10.1016/j.padiff.2024.100843
Duru, E. C., & Anyanwu, M. C. (2023). Mathematical model for the transmission of mumps and its optimal control. Biometrical Letters, 60(1), 77–95. https://doi.org/10.2478/bile-2023-0006
Hoshi, S. ling, Okubo, R., Tabuchi, K., Seposo, X., Shono, A., & Kondo, M. (2022). Cost-effectiveness analyses of monovalent mumps vaccination programs for Japanese children. Vaccine, 40(37), 5513–5522. https://doi.org/10.1016/j.vaccine.2022.08.004
Huang, J. feng, Zhao, Z. yu, Lu, W. kui, Rui, J., Deng, B., Liu, W. kang, Yang, T. long, Li, Z. yang, Li, P. hua, Liu, C., Luo, L., Zhao, B., Wang, Y. fang, Li, Q., Wang, M. zhai, & Chen, T. (2022). Correlation between mumps and meteorological factors in Xiamen City, China: A modelling study. Infectious Disease Modelling, 7(2), 127–137. https://doi.org/10.1016/j.idm.2022.04.004
Kibonge, A., & Edward, S. (2023). Modelling the transmission dynamics of mumps with control measures. Journal of Mathematical and Computational Science. https://doi.org/10.28919/jmcs/7943
Li, H., & Guo, X. (2022). Dynamics study of a stochastic SIQR epidemic model with vaccination and saturated incidence. IFAC-PapersOnLine, 55(3), 79–84. https://doi.org/10.1016/j.ifacol.2022.05.014
Miswanto, M., Biba, F., & Windarto, W. (2024). Analisis Kestabilan dan Kontrol Optimal pada Model Matematika Penyebaran Penyakit Mumps. Limits: Journal of Mathematics and Its Applications, 21(1), 117. https://doi.org/10.12962/limits.v21i1.20053
Nisar, K. S., Srinivas, M. N., Murthy, B. S. N., Madhusudanan, V., Gul, N., Abdulrehman, J., & Zeb, A. (2023). Exploring the dynamics of white noise and spatial temporal variations on hearing loss due to mumps virus. Results in Physics, 51(May), 106584. https://doi.org/10.1016/j.rinp.2023.106584
Pomeroy, L. W., Magsi, S., McGill, S., & Wheeler, C. E. (2023). Mumps epidemic dynamics in the United States before vaccination (1923–1932). Epidemics, 44(April), 100700. https://doi.org/10.1016/j.epidem.2023.100700
Song, Y., & Niu, L. (2024). Global dynamics of a periodically forced SI disease model of Lotka–Volterra type. Physica D: Nonlinear Phenomena, 470(June), 16–18. https://doi.org/10.1016/j.physd.2024.134422
Wang, K., Fan, H., & Zhu, Y. (2023). Dynamics and application of a generalized SIQR epidemic model with vaccination and treatment. Applied Mathematical Modelling, 120, 382–399. https://doi.org/10.1016/j.apm.2023.03.036
Widayati, R., Nadzifah, N., Fiqiyah, V. F., & Rizkiyani, N. (2023). Stability Analysis for the Spread of Mumps Based on SIQR Model. Jurnal Matematika, Statistika Dan Komputasi, 20(1), 24–40. https://doi.org/10.20956/j.v20i1.27060
Yadav, S., Bhadauria, A. S., & Verma, V. S. (2023). Study of an SIQR model with optimal control techniques: A mathematical approach. Results in Control and Optimization, 13(May), 100327. https://doi.org/10.1016/j.rico.2023.100327
Zhu, H., Zhang, X., & An, Q. (2022). Global stability of a rumor spreading model with discontinuous control strategies. Physica A: Statistical Mechanics and Its Applications, 606. https://doi.org/10.1016/j.physa.2022.128157