Perbandingan Metode Steffensen dan Metode Brent dalam Penyelesaian Masalah Break Even Point Menggunakan PHP

  • Adam Gyanendra Ali Baska Universitas Mataram
  • Amrullah Universitas Mataram
  • Gilang Primajati Universitas Mataram
  • Arjudin Universitas Mataram
Keywords: BEP; Steffensen; Brent; PHP; Comparison

Abstract

The nonlinear mathematical model of the Break Even Point (BEP) problem is difficult to solve analytically to obtain an exact solution; therefore, numerical methods can serve as an alternative approach to address this issue. Based on this, the present study aims to develop a PHP program for solving the BEP problem and to compare Steffensen’s and Brent’s methods in terms of error and number of iterations. This research used the experimental method, whose implementation procedures include preparation, PHP program development, program testing, program revision, analysis, and conclusion. The PHP-based program developed in this study can serve as an alternative tool for solving BEP problems and is accessible to both practitioners and academics via the following link: https://lpptp.fkip.unram.ac.id/smhs/e1r021001/index.php. In solving the BEP problem, the error of Steffensen’s method was 17,3 x 10-8, while the error of Brent’s method was 6,4 x 10-8, therefore the error produced by the Brent’s method is smaller than that of the Steffensen’s method because 6,4 x 10-8 < 17,3 x 10-8. Additionally, the number of iterations required by Steffensen’s method was 109, whereas the number of iterations of Brent’s method was 56, therefore, the number of iterations of Brent’s method is fewer than that of Steffensen’s method because 56 < 109. Consequently, it can be concluded that Brent’s method is more effective than Steffensen’s method in solving BEP problems in terms of both error and number of iterations.

References

Chapra, S. C., & Canale, R. P. (2015). Numerical method for engineers (7th ed.). New York: McGraw-Hill Education Press.

Dermawan, D. A., Mashuri, C., Permadi, G. S., Gunawan, D. A., Widiasih, D. (2022). Membuat game berbasis website menggunakan bahasa javascript dan php. Tasikmalaya: Perkumpulan Rumah Cemerlang Indonesia Press.

Erviana, B. S., Amrullah, Triutami, T. W., & Subarinah, S. (2023). Efisiensi penyelesaian numerik persamaan non-linear dengan metode newton raphson dan metode secant menggunakan program software berbasis python. Jurnal Ilmiah Pendidikan Dasar, 8(3), 1719-1729. https://doi.org/10.23969/jp.v8i3.10964

Eskandari, H. (2022). Hybrid steffensen’s method for solving nonlinear equation. Applied Mathematics, 13(9), 745-752. https://doi.org/10.4236/am.2022.139046

Estuningsih, R. D., & Rosita, T. (2019). Perbandingan metode biseksi dan metode newton-raphson dalam penyelesaian persamaan non linear. Jurnal Warta Akab, 43(2), 21-23. https://doi.org/10.55075/wa.v43i2.125

Hasdiana, S., & Khalid, I. (2020). Analisis titik impas sebagai alat perencanaan laba pada pt. semen indonesia tbk. yang terdaftar di bursa efek indonesia (bei). Jurnal Semarak, 3(3), 153-167. https://doi.org/10.32493/smk.v3i3.7402

Maharani, S., & Suprapto, E. (2018). Analisis numerik berbasis group investigation untuk meningkatkan kemampuan berpikir kritis. Magetan: AE Media Grafika Press.

Melrosa, F., & Rizal, Y. (2023). Perbandingan metode regula falsi dan metode ridder dalam menentukan akar persamaan non linear. Journal of Mathematics UNP, 8(4), 120-125. https://doi.org/10.24036/unpjomath.v8i4.14931

Natsir, K. (2016). Implementasi teknik bisection untuk penyelesaian masalah nonlinear break even point, Seminar Nasional Matematika dan Pendidikan Matematika (pp. 59-64). Yogyakarta: Universitas Negeri Yogyakarta.

Rahman, N. A., Abdullah, L., & Ghani, A. T. A. (2017). Modified brent's method for solving interval type-2 fuzzy polynomials. Far East Journal of Mathematical Science, 102(6), 1099-1113. https://doi.org/10.17654/MS102061099

Rosidi, M. (2019). Metode numerik menggunakan r untuk teknik lingkungan. Bandung: Piktochart Press.

Subarinah, S. (2022). Metode numerik. Mataram: FKIP Universitas Mataram Press.

Sujaya, K. A., Prayitno, S., Kurniati, N., & Sridana, N. (2024). Efektivitas metode brent dalam penyelesaian masalah break even point menggunakan pemrograman pascal. Mandalika Mathematics and Education Journal, 6(1), 120-130. https://doi.org/10.29303/jm.v6i1.6923

Sunandar, E. (2019). Penyelesaian sistem persamaan non-linier dengan metode bisection & metode regula falsi menggunakan bahasa program java. PETIR, 12(2), 179-186. https://doi.org/10.33322/v12i2.490

Sutrisno, T. (2023). Aplikasi penyelesaian numerik pencarian akar persamaan non-linier dan penerapannya dalam menyelesaikan analisis break even point. Journal of Computer Science and Information Systems, 7(1), 37-49. https://doi.org /10.24912/computatio.v7i1.23438

Wisaksono, A. (2022). Buku ajar mata kuliah pengantar menejemen ekonomi teknik. Sidoarjo: UMSEDA Press.

Published
2025-05-22
Section
Articles