Prediksi Retur Produk Farmasi dan Klasifikasi Risiko Menggunakan Model ARIMA

  • Felicia Eldora Universitas Negeri Medan
  • Suvriadi Panggabean Universitas Negeri Medan
Keywords: pharmaceutical distribution, product return, ARIMA, forecasting, bad good risk

Abstract

Pharmaceutical product distribution faces specific challenges, particularly in managing product returns that can affect logistics efficiency and service quality. This study aims to predict the return quantity of pharmaceutical products using the ARIMA (Autoregressive Integrated Moving Average) model and to classify bad goods risk based on the prediction results. The data used consists of monthly return records from a Pharmaceutical Wholesaler (PBF) for a products—Paracetamol Syrup—during the period from January 2023 to December 2024. The research methodology includes data preprocessing, ARIMA model identification and estimation, residual diagnostics, forecasting, and risk classification. The results show that the ARIMA(1,1,1) model provides sufficiently accurate forecasts for Paracetamol Syrup, with predicted returns over the next six months falling into the medium-risk category. These findings offer valuable insights for pharmaceutical wholesalers to anticipate potential losses due to damaged or expired products and to design distribution strategies that are more responsive to return patterns.

References

Alfian, M., Lawuningtyas Hariadini, A., & Sidharta, B. (2020). Hubungan Tingkat Pengetahuan Petugas Pengelola Obat dengan Tingkat Ketersediaan Obat Di Puskesmas Kota Malang. Pharmaceutical Journal of Indonesia, 6(1), 27–33. https://doi.org/10.21776/ub.pji.2020.006.01.5

Anjella, I. sopyan. (2021). Evaluasi Sistem Penyimpanan Obat Di Salah Satu Gudang Pedagang Besar Farmasi (Pbf) Di Kota Bandung. Farmaka, 18(February), 53–59.

Anshory, M. I., Priyandari, Y., & Yuniaristanto, Y. (2020). Peramalan Penjualan Sediaan Farmasi Menggunakan Long Short-term Memory: Studi Kasus pada Apotik Suganda. Performa: Media Ilmiah Teknik Industri, 19(2), 159–174. https://doi.org/10.20961/performa.19.2.45962

Ariyanto, F., & Tamam, M. B. (2020). Analisis Time Series Dengan Metode Arima Dan Aplikasinya. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (JATIM), 1(2), 26–36. https://doi.org/10.31102/jatim.v1i2.972

Dahbul, N. A., Yasin, N. M., & Lazuardi, L. (2021). Analisis Distribusi Apotek Berdasar Standar Pelayanan Kefarmasian Melalui Sistem Informasi Geografis. Majalah Farmaseutik, 17(1), 82. https://doi.org/10.22146/farmaseutik.v17i1.52846

Dewianawati, D. (2020). Penarikan Merek Produk: Efek Industri, Strategi Penarikan Dan Bahaya Pada Kekayaan Pemegang Saham. Media Mahardhika, 18(3), 521–535. https://doi.org/10.29062/mahardika.v18i3.214

Diina, T. R., Sriwidodo, S., Sylvia Nurrasjid, E., & Kustiyawan, I. (2024). Penerapan Lean Warehousing Pada Gudang Bahan Baku Industri Farmasi PT XYZ. Majalah Farmasetika, 9(4), 367–387. https://doi.org/10.24198/mfarmasetika.v9i4.54864

Fadillah, W. N., & Wijayanti, S. (2025). Gambaran Penerapan Cara Distribusi Obat Yang Baik Di Pedagang Besar Farmasi “X” Kota Tarakan. Jurnal Borneo: Science Technology and Health Journal, 5(1), 24–32.

Fajari, D. A., Abyantara, M. F., & Lingga, H. A. (2021). Peramalan Rata-Rata Harga Beras Pada Tingkat Perdagangan Besar Atau Grosir Indonesia Dengan Metode Sarima (Seasonal Arima). Jurnal Agribisnis Terpadu, 14(1), 88. https://doi.org/10.33512/jat.v14i1.11460

Gond, B. P. (2025). Predicting Bad Goods Risk Scores with ARIMA Time Series: A Novel Risk Assessment Approach. http://arxiv.org/abs/2502.16520

Hidayat, M. T., & Sulistiyono, M. (2025). Analisis Performa Algoritma XGBoost , GRU , dan Prophet dalam Peramalan Penjualan Obat untuk Optimasi Rantai Pasok Farmasi Performance Analysis of XGBoost , GRU , and Prophet Algorithms in Drug Sales Forecasting for Pharmaceutical Supply Chain Optimizatio. 5(1), 65–73.

Jesselyn, C., & Dewi, S. (2024). Implementasi Metode Peramalan (Forecasting) Pada Penjualan Kuas di PT ABC. 3(1), 101–109. https://doi.org/10.55606/jtmei.v3i1.3222

Juwita Lintogareng, O., Astuti Lolo, W., & Rundengan, G. E. (2022). Implementation Of Good Distribution Practices For Pharmaceutical Wholesalers At PT Parit Padang Global Implementasi Cara Ditribusi Obat Yang Baik Pada Pedagang Besar Farmasi Di PT Parit Padang Global. Pharmacon, 11(2), 1422–1429.

Kemenkes RI. (2021). Pedoman Pengelolaan Obat Rusak dan Kadaluwarsa di Fasilitas Pelayanan Kesehatan dan Rumah Tangga. In kemenkes RI. https://farmalkes.kemkes.go.id/2021/09/pedoman-pengelolaan-obat-rusak-dan-kedaluwarsa-di-fasyankes-dan-rumah-tangga/

Kusreni, K., Jati, S. P., & Suhartono, S. (2023). Analisis Manajemen Risiko Pada Supply Chain Persediaan Farmasi Saat Pandemi Covid-19. Cendekia Journal of Pharmacy, 7(1), 29–36. https://doi.org/10.31596/cjp.v7i1.196

Lusiana, A., & Yuliarty, P. (2020). Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap Di PT X. Industri Inovatif : Jurnal Teknik Industri, 10(1), 11–20. https://doi.org/10.36040/industri.v10i1.2530

Marir, M., & Kiswara, E. (2024). Perbandingan Kinerja Keuangan dan Finansial. 13, 1–15.

Mu’min, A., Budi, S., & Toba, H. (2024). The Utilization of Time Series Data Forecasting Techniques on Hospitals Pharmaceutical Inventory. Jurnal Teknik Informatika Dan Sistem Informasi, 10(2), 344–360. https://doi.org/10.28932/jutisi.v10i2.9352

Mustaqimah, M., Saputri, R., & Hakim, A. R. (2021). Narrative Review: Implementasi Distribusi Obat yang Baik di Pedagang Besar Farmasi. Jurnal Surya Medika, 6(2), 119–124. https://doi.org/10.33084/jsm.v6i2.2128

Pratiwi, R., Bahtiar, R., & Putri, W. M. (2024). Validasi Pengiriman Produk Rantai Dingin Pada Salah Satu PBF di Kota Bandung. 2(4), 1–8.

Putri, R. C., & Junaedi, L. (2022). Penerapan Metode Peramalan Autoregressive Integrated Moving Average Pada Sistem Informasi Pengendalian Persedian Bahan Baku ( Studi Kasus : Toko Kue Onde-Onde Surabaya ). Jurnal Ilmu Komputer Dan Bisnis (JIKB), XIII(1), 164–173.

Rosyidah, R., & Sukmana, R. (2019). Aplikasi Metode Autoregressive Integrated Moving Average (Arima) Pada Peramalan Stabilitas Bank Syariah Di Indonesia. Jurnal Ekonomi Syariah Teori Dan Terapan, 5(3), 200. https://doi.org/10.20473/vol5iss20183pp200-215

Rustamsyah, A., Ubaddillah, A. T., & Syamsudin, R. A. M. R. (2024). Jurnal Medika Farmaka. Evaluasi Kinerja Pemasok Pedagang Besar Farmasi Pada Proses Pengadaaan Di Puskesmas ABC Kabupaten Garut, 2(3), 280–285. https://doi.org/10.33482/jmedfarm.v2i3.57

Saputra, J. E., & Febrianti, W. (2025). Application of Autoregressive Integrated Moving Average ( ARIMA ) for Forecasting Inflation Rate in Indonesia. 21(2), 382–396. https://doi.org/10.20956/j.v21i2.36609

Zahra, I. A. (2021). Analisis Perbandingan Teknik Peramalan Kebutuhan Obat Dengan Metode Arima Dan Single Eksponensial Smoothing Studi Kasus: Rsud Indramayu. Jurnal Tata Kelola Dan Kerangka Kerja Teknologi Informasi, 6(1), 23–29. https://doi.org/10.34010/jtk3ti.v6i1.2261

Published
2025-06-02
Section
Articles