Prediksi Jumlah Wisatawan Asing Masuk ke Indonesia Tahun 2026 Menggunakan Model Rantai Markov
Abstract
Indonesia's tourism sector experienced a drastic decline due to the pandemic, with the number of foreign tourists falling by 64.64% in 2020, disrupting contributions to the country's GDP and foreign exchange. The lack of application of stochastic models to predict foreign tourist arrivals nationwide is a challenge in policy planning. This research aims to build a Markov Chain-based prediction model to estimate the number of foreign tourists in 2026, overcoming the weaknesses of conventional approaches that are deterministic. The method used is the analysis of the probability of transition between states (Increase/Decrease/Stable) based on historical data of tourist arrivals. The prediction results show that the number of foreign tourists in 2026 reached 18,202,215 people, indicating an optimistic growth trend and potential recovery of the tourism sector. The conclusion of this study confirms that the Markov Chain model is effective for macro projection of tourist fluctuations, so that it can be a reference in the preparation of adaptive and data-based tourism policies.
References
Akhdan, A., & Fauzy, A. (2023). Pendekatan Rantai Markov Waktu Diskrit dalam Memprediksi Penurunan dan Kenaikan Jumlah Pelanggan Air Minum Baru PDAM Kota Surakarta. Emerging Statistics and Data Science Journal, 1(2), 309–319. https://doi.org/10.20885/esds.vol1.iss.2.art31
Aritonang, K., Tan, A., Ricardo, C., Surjadi, D., Fransiscus, H., Pratiwi, L., Nainggolan, M., Sudharma, S., & Herawati, Y. (2020). Analisis Pertambahan Pasien COVID-19 di Indonesia Menggunakan Metode Rantai Markov. Jurnal Rekayasa Sistem Industri, 9(2). https://doi.org/10.26593/jrsi.v9i2.3998.69-76
Febrian, D., Kartika, D., & Nainggolan, D. A. J. (2021). Peramalan Jumlah Wisatawan Mancanegara Yang Datang Ke Sumatera Utara Dengan Fuzzy Time Series. KUBIK: Jurnal Publikasi Ilmiah Matematika, 6(1), 13–23. https://doi.org/10.15575/kubik.v6i1.10604
Hasibuan, I. M., Mutthaqin, S., Erianto, R., & Harahap, I. (2023). Kontribusi Sektor Pariwisata Terhadap Perekonomian Nasional. Urnal Masharif Al-Syariah: Jurnal Ekonomi Dan Perbankan Syariah, 8(2).
Indrasetianingsih, A., & Damayanti, I. (2018). Prediksi Jumlah Kunjungan Wisatawan Mancanegara di Indonesia dengan Menggunakan Metode ARIMA Box-Jenkins dan Jaringan Syaraf Tiruan. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 10(2). https://doi.org/10.36456/jstat.vol10.no2.a1219
Kumaisyaroh, D., & Bahri, S. (2023). ANALISIS RANTAI MARKOV UNTUK PREDIKSI HASIL PRODUKSI TANAMAN KOPI DI PROVINSI SUMATERA SELATAN Markov chain Analysis for Prediction of Coffee Crop Production in South Sumatera Province. Jurnal Matematika Statiska Dan Terapannya, 02(02), 125–134.
Masuku, F. N., Langi, Y. A. R., & Mongi, C. (2018). Analisis Rantai Markov Untuk Memprediksi Perpindahan Konsumen Maskapai Penerbangan Rute Manado-Jakarta Analysis of Markov Chain To Predict Consumer Movement of Airline Route Manado-Jakarta. Ilmiah Sains, 18(2), 1–5.
Meimela, A. (2021). Prediksi Jumlah Kunjungan Wisatawan Mancanegara ke Indonesia. Media Wisata, 19(1). https://doi.org/10.36276/mws.v19i1.64
Mukhtar, H., Muhammad, R., Reny Medikawati, T., & Yoze Rizki. (2021). Peramalan Kedatangan Wisatawan Mancanegara Ke Indonesia Menurut Kebangsaan Perbulannya Menggunakan Metode Multilayer Perceptron. Jurnal CoSciTech (Computer Science and Information Technology), 2(2), 113–119. https://doi.org/10.37859/coscitech.v2i2.3324
Nasib, S. K., Hasan, R., Djakaria, I., Payu, M. R. F., Nuha, A. R., & Nashar, L. O. (2024). Analisis Peluang Jangka Panjang Mesin Penggilingan Padi Menggunakan Rantai Markov. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 12(1), 63–70. https://doi.org/10.37905/euler.v12i1.25280
Nurman, T. A., Syata, I., & Wulandari, C. D. (2021). Prediksi Hasil Panen Kopi di Sulawesi Menggunakan Analisis Rantai Markov. Jurnal MSA ( Matematika Dan Statistika Serta Aplikasinya ), 9(2), 120–127. https://doi.org/10.24252/msa.v9i2.25413
Prayuda, A., & Pratama, I. (2024). PREDIKSI JUMLAH KEDATANGAN WISATAWAN MANCANEGARA DI INDONESIA BERDASARKAN PINTU MASUK KEDATANGAN UDARA. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 9(2), 232–241. https://doi.org/10.36341/rabit.v9i2.4787
Putri, D. M., Afrimayani, A., Hasibuan, L. H., Ul Hasanah, F. R., & Jannah, M. (2024). COMPARISON OF DOUBLE EXPONENTIAL SMOOTHING AND FUZZY TIME SERIES MARKOV CHAIN IN FORECASTING FOREIGN TOURIST ARRIVALS. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 18(3), 1817–1828. https://doi.org/10.30598/barekengvol18iss3pp1817-1828
Putu Sugiartawan, I. G. S. A. (2015). Peramalan Tingkat Kunjungan Wisatawan dengan Metode Average Based Fuzzy Time Series dan Markov Chain Model di Sriphala Resort & Hotel. Seminaskit 2015/ Issn : 2477-5649, 159–164.
Riwanto, M. A. (2024). Analisis Data Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Microsoft Power Bi. Jurnal Sistem Informasi (TEKNOFILE), 2(3), 112–119.
Wijaya, D. E., Rasyid, N. A., Tandirerung, N. W., Asti, M., Faruqi, F. Al, Ekasari, M., Erliana, D., & Putri, A. R. (2024). Penerapan Metode Rantai Markov dalam Memprediksi Hasil Panen Tanaman Padi di Kabupaten Bulukumba. JMATHCOS Journal of Mathematics Computation and Statistic, 7(2), 332–338.
Xu, L. (2024). A Markov Chain Prediction Model Based on Rural Tourism Supply and Demand Matching Governance Model from the Perspective of Cultural Tourism Integration. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns.2023.2.00395