Penerapan Ensemble K-modes Pada Pengelompokkan Kelurahan di Kota Gorontalo Berdasarkan Kecanduan Game Online Remaja

  • Siti Nurmardia Abdussamad Gorontalo State University
  • Mohamad Alfiransyah Taufik Gorontalo State University
  • Novianita Achmad Gorontalo State University
  • Djihad Wungguli Gorontalo State University
  • Nisky Imansyah Yahya Gorontalo State University
Keywords: K-modes, K-medoid, Clustering, Multivariate Analysis, Game Online

Abstract

The swift advancement of digital technology has resulted in a heightened frequency of online game usage among teenagers, raising concerns about potential addiction. This study aims to cluster urban villages in Gorontalo City based on the characteristics of online game addiction in adolescents, to support the formulation of more effective preventive policies. The method used is ensemble clustering with K-modes algorithm approach, which is effective for mixed numeric and categorical data. Data were obtained through a survey of adolescents aged 10-24 years in all urban villages, including indicators of lack of attention from close people, self-control, lack of activities, stress or depression, social environment, parenting, length of time playing online games, frequency of playing online games and many favorite online games. The clustering results obtained 3 optimum clusters, where cluster 1 consists of 7 neighborhoods, cluster 2 consists of 17 neighborhoods and cluster 3 consists of 26 neighborhoods. Cluster 1 is a group of neighborhoods with a low risk and addiction level, cluster 2 with a moderate tendency, and cluster 3 with a high tendency.

References

Abdussamad, Siti Nurmardia Astutik, S., & Effendi, A. (2020). Evaluation of Implementation Context Based Clustering in Fuzzy Geographically Weighted Clustering-Particle Swarm Optimization Algorithm. Jurnal EECCIS, 14.

Aulanda, L., Windarto, A. P., & Okprana, H. (2021). Pengelompokan Pembiayaan Nasabah Klaim Asuransi Pengguna Kendaraan Bermotor denganMetode K-Medoids. TIN: Terapan Informatika Nusantara, 2.

Badruttamam, A., Sudarno, & Maruddani, D. A. I. (2020). Penerapan Analisis Klaster K-Modes Dengan Validasi Davies Bouldin Indexdalam Menentukan Karakteristik Kanal Youtube Di Indonesia (Studi Kasus: 250 Kanal YouTube Indonesia Teratas Menurut Socialblade). Jurnal Gaussian, 9.

Dinata, R. K., Retno, S., & Hasdyna, N. (2021). Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm. International Information & Engineering Technology Assosciation, 35.

Dwiyamti, S. N., Nisa, K., Sutrisno, A., & Herawati, N. (2022). Analisis Klaster untuk Data Kategorik Menggunakan Metode K-Modes (Studi Kasus: Data Pasien COVID-19 di RSUD Dr. H. Abdul Moeloek Provinsi Lampung). Jurnal Siger Matematika, 03.

Fajar, M., Masyhuri, M., & Muda, Y. (2024). Kecanduan Game Online pada Remaja. Journal of Education Research, 5.

Faujia, Rosi Anisya Setianingsih, Eni Sawitri Pratiwi, H. (2022). Analisis Klaster K-Means Dan Agglomerative Nesting Pada Indikator Stunting Balita Di Indonesia. Seminar Nasional Official Statistics.

Irawan, S., & Siska W, D. (2021). Faktor-Faktor Yang Mempengaruhi Kecanduan Game Online Peserta Didik. Jurnal Konseling Gusjigang, 07.

Jannah, B., Utami, I. T., & Hakim, A. R. (2023). Metodeensemble Robust Clustering Using Links(Rock) Untuk Pengelompokan Perguruan Tinggi Swasta (PTS) Di Kota Semarang. Jurnal Gaussian, 12.

Mais, F. R., Rompas, S. S. J., & Gannika, L. (2020). Kecanduan Game Online Dengan Insomnia Pada Remaja. Jurnal Keperawatan, 8(2), 18. https://doi.org/10.35790/jkp.v8i2.32318

Matur, Y. P., Simon, M., & Ndorang, T. (2021). Hubungan Kecanduan Game Online Dengan Kualitas Tidur Pada Remaja SMA Negeri Di Kota Ruteng. Wawasan Kesehatan, 6.

Pautina, M. R., Tuasikal, J. M. S., & Siregar, I. K. (2023). Deskripsi Faktor-Faktor Yang Mempengaruhi Siswa Kecanduan Game Online Di SMP Negeri 1 Kota Gorontalo. Superior Education Journal, 1.

Pelekis, S., Pipergias, A., Karakolis, E., Mouzakitis, S., Santori, F., Ghoreishi, M., & Askounis, D. (2023). Targeted demand response for flexible energy communities using clustering techniques. Sustainable Energy, Grids and Networks, 36.

Shofari, M. R., Soesanto, O., & Kartini, D. (2024). Quick Robust Clustering Using Links (Qrock) Untuk Pengelompokan Desa Kabupaten Banjar. RAGAM: Journal of Statistics and Its Application, 3.

Yulianton, H., Sutanto, F. A., & Mulyani, S. (2021). Pengelompokan Mahasiswa Berbasis Categorical Variables Menggunakan Metode K-Modes Clustering. Proceeding SENDIU.

Published
2025-06-12
Section
Articles