Simulasi Monte Carlo Untuk Prediksi dan Analisis Tindak Pidana di Sumatera Utara

  • Ledy Meva Tiurma Gultom Universitas Negeri Medan
  • Felicia Eldora Universitas Negeri Medan
  • Khoiriyati Azmi Universitas Negeri Medan
  • Rut Omega Purba Universitas Negeri Medan
  • Karin Aulia Putri Universitas Negeri Medan
  • Sudianto Manullang Universitas Negeri Medan
  • Alvi Sahrin Nasution Universitas Negeri Medan
Keywords: Criminal acts, Monte Carlo, prediction, stochastic simulation, North Sumatra

Abstract

Crime data in North Sumatra Province obtained from the Central Statistics Agency shows an upward trend, peaking in 2023. This condition presents an urgent need for swift and appropriate policy intervention. The effectiveness of such policies is measured by their ability to significantly reduce crime rates. This study aims to forecast the trend of criminal acts in North Sumatra for the period 2024–2028 using the Monte Carlo Simulation method, based on historical data from 2000 to 2023. The stochastic simulation approach was chosen to accommodate the uncertainty and variability inherent in crime data. The results provide probabilistic predictions that can serve as a reference for the government in designing more adaptive and responsive crime prevention policies. This model is expected to offer realistic estimates of potential increases or decreases in crime, thereby enabling more targeted and data-driven decisions. Overall, the findings of this study contribute to the development of strategic, risk-based security policies that reflect the dynamic nature of criminal activity.

References

Amirul Rizal, N., & Aslami, N. (2022). Analisis Studi Kelayakan Investasi Waralaba (Franchise). Journal of Social Research, 1(4), 284–288. https://doi.org/10.55324/josr.v1i4.95

Daratullaila, & Sari, R. P. (2024). Prediksi Jumlah Kejahatan Di Indonesia Pada Tahun 2023 Dengan Metode Autoregressive Integrate Moving Average (Arima). Jurnal Gamma-Pi, 5(2), 60–67. https://doi.org/10.33059/gamma-pi.v5i2.9523

Farisi, A. S. Al, & Riono, S. H. (2024). Aplikasi Prediksi Permintaan Produk Dengan Metode Simulasi Monte Carlo Berbasis Web. Akiratech: Journal of Computer and …, 1(1), 18–27. https://journal.ajbnews.com/index.php/akiratech/article/view/9

Handayani, M., Sonny, G., & Kusuma, M. (2025). Pengaruh Fraud Triangle Terhadap Kecurangan Laporan Keuangan. 14(2), 50–57.

Idellie, P. L., & Atok, R. M. (2023). Pemodelan Distribusi Kerugian Siber dengan Pendekatan Copula dan Perhitungan Premi Asuransi Siber. Jurnal Sains Dan Seni ITS, 12(1). https://doi.org/10.12962/j23373520.v12i1.97479

Indriyan Dwi Kesuma, A., Irma Purnamasari, A., & Ali, I. (2024). Prediksi Jumlah Narapidana Menggunakan Algoritma Regresi Linier: Di Wilayah Cirebon. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 621–629. https://doi.org/10.36040/jati.v8i1.8364

Kurniawan, Y., Siregar, T., & Hidayani, S. (2022). Penegakan Hukum Oleh Polri Terhadap Pelaku Tindak Pidana Judi Online (Studi Pada Kepolisian Daerah Sumatera Utara). ARBITER: Jurnal Ilmiah Magister Hukum, 4(1), 28–44. https://doi.org/10.31289/arbiter.v4i1.1203

Mahri, M. F. A., Mujtaba, N. Z., & Sari, A. P. (2025, January). Penerapan Metode Monte Carlo untuk Menentukan Rentang Waktu Perjalanan Bus Trans Jatim. In Prosiding Seminar Implementasi Teknologi Informasi dan Komunikasi (Vol. 4, No. 1, pp. 23-30).

Nurmiati. (2024). Manajemen Sains: Konsep, Metodologi, dan Aplikasi (Pertama). Widina Media Utama. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI

Sandi, M. A., & Tempola, F. (2022). Sistem Informasi Geografis Pengelompokkan Daerah Rawan Kriminalitas Menggunakan Metode Hierarchical Clustering. Jurnal Jaringan Dan Teknologi …, 1(1), 14–18. https://doi.org/00.0000/jati

Saridewi, F., Lannai, D., Bakri, A., Pramukti, A., & Subhan, S. (2022). Pengaruh Kompetensi, Skeptisme Profesional Dan Pengalaman Auditor Terhadap Pengungkapan Fraud. Center of Economic Students Journal, 5(1), 74–85. https://doi.org/10.56750/csej.v5i1.67

Siegel, L. J., & Worrall, J. L. (2022). Criminology: The Core (8th ed.). Cengage Learning.

Suparto, D., & Annas Rifki, A. (2023). Pengaruh Terpaan Berita Pelecehan Seksual Di Kampus Terhadap Tingkat Kecemasan Mahasiswa. Innovative: Journal Of Social Science Research, 3(5), 4946–4957. https://j-innovative.org/index.php/Innovative/article/view/5454

Waruwu, M., Pu`at, S. N., Utami, P. R., Yanti, E., & Rusydiana, M. (2025). Metode Penelitian Kuantitatif: Konsep, Jenis, Tahapan dan Kelebihan. Jurnal Ilmiah Profesi Pendidikan, 10(1), 917–932. https://doi.org/10.29303/jipp.v10i1.3057

Watrianthos, R., Suryadi, S., Kusmanto, & Samsir, S. (2023). Pemetaan Tingkat Kriminalitas di Indonesia: Analisis Spasial dengan Pendekatan SIG pada Tingkat Provinsi. Bulletin of Information Technology (BIT), 4(3), 353–360. https://doi.org/10.47065/bit.v4i3.861

Published
2025-07-20