Modifikasi Operator Weighted Backward Shift untuk Membentuk Operator Hypercyclic pada Ruang Barisan

  • Nur Afandi Program Studi S1 Matematika, FMIPA, Universitas Bengkulu, Bengkulu
  • Septri Damayanti Universitas Bengkulu
  • Ratna Widayati Universitas Bengkulu
Keywords: hypercyclic, backward_shift, \(\ell^p\), orbit, dense

Abstract

The linear operator T: X --> X is called an hypercyclic operator if there exist  such that the orbit of  under the operator T is dense in X. This study aims to construct an explicit hypercyclic operator on the sequence space \(\ell^p\), by modifying the backward shift operator using a non-constant weight sequence. This approach differs from Rolewicz's classical method, which used constant weights. The method applied is constructive and formal, relying on deductive reasoning in mathematical proofs. Two operators—weighted left and right shifts—are introduced and their properties are analyzed, including their composition and iterative behavior. The main result is the construction of a specific operator \(S_\bold{a}\) weighted by \(\bold{a}=(a_n)\) that is proven to be hypercyclic. The proof involves demonstrating the existence of a vector whose orbit under \(S_\bold{a}\) is dense in \(\ell^p\).

References

Journal of Functional Analysis 200 (2003). 494–504.

Amouch, M., León Saavedra, F., & Romero de la Rosa, M. P. (2023). Hypercyclicity of Operators That λ Commute with The Hardy Backward Shift. Journal of Mathematical Sciences (2024) 280:33–49

Bayart, F., Costa Júnior, F., & Papathanasiou, D. (2021). Baire Theorem and Hypercyclic Algebras. Advances in Mathematics. 376 (2021). 1-58

Bayart, F., & Grivaux, S. (2006). Frequently hypercyclic operators. Transactions of The American Mathematical Society. 358(11) 5083–5117

Bayart, F., & Matheron, É. (2009). Dynamics of Linear Operators. Cambridge University Press.

Bès, J., Conejero, J.A., & Papathanasiou, D. (2017). Convolution operators supporting hypercyclic algebras. J. Math. Anal. Appl. 445 (2017) 1232–1238

Bès, J., & Peris, A. (1999). Hereditarily hypercyclic operators. Journal of Functional Analysis. 167 (1999). 94-112

Bès, J., Menet, Q., Peris, A., & Puig, Y. (2016). Recurrence Properties of Hypercyclic Operators. Math. Ann. 366 (2016). 545–572

Çolakoğlu, N., Martin, Ö., & Sanders, R. (2022). Disjoint and Simultaneously Hypercyclic Pseudo-shifts. Journal of Mathematical Analysis and Applications. 512(2): 126130.

Çolakoğlu, N., & Martin, Ö. (2021). Disjoint and simultaneous hypercyclic Rolewicz-type operators. Hacettepe Journal of Mathematics & Statistics. 50 (6). 1609 – 1619

Kubrusly, C.S.(2024). Weak Supercyclicity—An Expository Survey. Results Math 79, 194 (2024).

El Berrag, M. (2024). On Cesàro-Hypercyclic Operators. Int. J. Anal. Appl. 1-8

Grosse-Erdmann, K.-G. (1999). Universal families and hypercyclic operators. Bull. AMS, 36(3), 345–381.

Grosse-Erdmann, K.-G. (2000). Hypercyclic and chaotic weighted shifts. Studia Маthеmatica 139 (1), 47-69

Ivković, S., & Tabatabaie, S.M. (2023). Hypercyclic Generalized Shift Operators. Complex Anal. Oper. Theory. 17 (60)

Ivković, S., & Tabatabaie, S.M. (2021). Hypercyclic Translation Operators on the Algebra of Compact Operators. Iran J Sci Technol Trans Sci 45, 1765–17750.

Muro, S., Pinasco, D., & Savransky, M. (2017). Hypercyclic Behavior of Some Non-Convolution Operators on H(C^N). Journal of Operator Theory, Vol. 77(1), pp. 39–59.

Rolewicz, S. (1969). On orbits of elements. Studia Mathematica, 32, 17–22.

Salas, H. N. (1995). Hypercyclic weighted shifts. Trans. AMS, 347(3), 993–1004.

Tsirivas, N. (2017). Common Hypercyclic Vectors for Backward Shift Operators. Journal of Operator Theory.77 (1) , pp. 3-17

Published
2025-06-18
Section
Articles