Matematika dalam Penelitian Kopi: Visualisasi Jaringan dan Klasterisasi Topik Berdasarkan Data Scopus
Abstract
This study aims to explore the scientific landscape of mathematical applications in coffee-related research using a bibliometric approach. By analyzing 99 documents retrieved from the Scopus database, this study identifies global research trends, productive authors and institutions, country-level contributions, and dominant subject areas. The analysis includes publication patterns, keyword co-occurrence networks, and author collaboration clusters visualized using VOSviewer. The findings show a significant rise in scientific interest since 2016, with the United States and Indonesia leading in publication volume. Although the research spans multiple disciplines such as mathematics, engineering, agriculture, and computer science, collaboration among researchers remains limited, with many author clusters operating independently. The keyword clustering reveals six major themes ranging from bioinformatics and plant disease modeling to chemical composition and teaching philosophy. These findings underscore the growing role of mathematical methods in coffee research and highlight the need for stronger interdisciplinary and international collaboration to support innovation in coffee science and production.
References
Celestino, M. S., Belluzzo, R. C. B., Albino, J. P., & Valente, V. C. P. N. (2024). ANÁLISE BIBLIOMÉTRICA: REVISÃO DE LITERATURA E PROPOSTA DE FRAMEWORK METODOLÓGICO EM 12 PASSOS. ARACÊ, 6(4), 13421–13446. https://doi.org/10.56238/arev6n4-146
De Sousa, M. N. A., Almeida, E. P. de O., & Bezerra, A. L. D. (2024). Bibliometrics: what is it? What is it used for? And how to do it? Cuadernos de Educación y Desarrollo, 16(2), e3042. https://doi.org/10.55905/cuadv16n2-021
Echchabi, A., Ayedh, A. M., & Musse, O. S. H. (2024, December 10). Sustainability Efforts in Coffee Production. An analytical review. „Sustainable Development: Modern Trends and Challenges“. https://doi.org/10.52244/c.2024.11.14
Kementerian Pertanian. (2022). OUTLOOK KOPI 2022 Kementerian Pertanian. Pusat Data dan Sistem Informasi Pertanian.
Madrid-Casaca, H., Salazar-Sepúlveda, G., Contreras-Barraza, N., Gil-Marín, M., & Vega-Muñoz, A. (2021). Global Trends in Coffee Agronomy Research. Agronomy, 11(8), 1471. https://doi.org/10.3390/agronomy11081471
Samper, L., & Quiñones-Ruiz, X. (2017). Towards a Balanced Sustainability Vision for the Coffee Industry. Resources, 6(2), 17. https://doi.org/10.3390/resources6020017
Santana, L. S., Ferraz, G. A. e S., Teodoro, A. J. da S., Santana, M. S., Rossi, G., & Palchetti, E. (2021). Advances in Precision Coffee Growing Research: A Bibliometric Review. Agronomy, 11(8), 1557. https://doi.org/10.3390/agronomy11081557
T N, S., Gopinandhan, T. N., Hiregoudar, S., Nidoni, U., & Katti, P. (2024). RECENT ADVANCES IN PROCESSING AND VALUE ADDITION IN COFFEE (COFFEA). In Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 15 (pp. 375–395). Iterative International Publisher, Selfypage Developers Pvt Ltd. https://doi.org/10.58532/V3BCAG15P3CH7
Tosta, M. F., Salvio, L. G. A., Corrêa, J. L. G., & Andrade, E. T. de. (2020). Modelagem matemática da cinética de secagem do café (Coffea arabica L.) processado de diferentes formas com uso de enzimas e levedura. Research, Society and Development, 9(7), e908974359. https://doi.org/10.33448/rsd-v9i7.4359
Utama, Y. J., & Ambariyanto. (2017). Achieving Research University: Indonesian Case. IOP Conference Series: Earth and Environmental Science, 55, 012072. https://doi.org/10.1088/1755-1315/55/1/012072
Vega, A., León, J. A. De, Reyes, S. M., & Gallardo, J. M. (2021). Modelo matemático para determinar la correlación entre parámetros fisicoquímicos y la calidad sensorial de café Geisha y Pacamara de Panamá. Información Tecnológica, 32(1), 89–100. https://doi.org/10.4067/S0718-07642021000100089