Aplikasi Persamaan Diferensial Dalam Mengestimasi Jumlah Penduduk dengan Menggunakan Model Eksponensial dan Logistik

  • Nasrun Rozikin Universitas Mataram
  • Ketut Sarjana Universitas Mataram
  • Arjudin Arjudin Universitas Mataram
  • Nurul Hikmah Universitas Mataram
Keywords: differential equation, exponential model, logistic model

Abstract

This research was aimed to describe the application of differential equations of the population growth model in the City of Mataram, which is an exponential and logistic models for estimating the population of the City of Mataram in 2024. The research method used in this research is descriptive research with a qualitative approach carried out by observation and analyze the subject. The subject of this research was data on the population of the City of Mataram from 2006 to 2019. Meanwhile, to determine the accuracy and validity of the research data, the triangulation of sources was used. The data used comes from the Dispendukcapil and BPS the City of Mataram. The research result, it shows that the exponential model has an accuracy rate of 99,6%, which is very accurate, while for estimating with a logistic model each criterion is very accurate but the confidence level is 97,9%. Estimation results also show that population growth in the city of Mataram in the future will slowdown in its growth every 2 years, with an average decrease of 0.5%.

Author Biographies

Ketut Sarjana, Universitas Mataram

Department of Mathematics Education

Arjudin Arjudin, Universitas Mataram

Department of Mathematics Education

Nurul Hikmah, Universitas Mataram

Department of Mathematics Education

References

Badan Pusat Statistik (BPS) NTB. (2019). Kependudukan dan Ketenagakerjaan. In Katalog Kota Mataram Dalam Angka Mataram Municipality In Figures 2019. Mataram: Badan Pusat Statistik Nusa Tenggara Barat.

Nurkholipah, N. S., Anggriani, N., & Supriatna, A. K. (2017). Perbandingan Proyeksi Penduduk Jawa Barat Menggunakan Malthus dan Verhust dengan Variasi Internal Pengambilan Sampel. Jurnal DIALEKTIKA, 1(1), 195-202. Retrieved from https://jurnal.untan.ac.id/index.php/jbmstr/article/view/5189

Purcell, E., & Varberg, D. (1993). Persamaan Diferensial. In E. J. Purcell, & D. Varberg, Kalkulus dan Geometri Analitis Jilid 2 Terjemahan oleh I Nyoman Susila dkk (5th ed.). Jakarta: Erlangga.

Putri, W. (2015). Perbandingan Model Malthus Dan Model Verhulst Untuk Estimasi Jumlah Penduduk Indonesia Tahun 2000 - 2014. Jurnal Matematika UNAND, 4(1), 1. https://doi.org/10.25077/jmu.4.1.1-11.2015

Stewart, J. (2003). Persamaan Diferensial. In J. Stewart, Kalkulus Terjemahan oleh I Nyoman Susila dkk. Partial Differential Equations and Complex Analysis. Jakarta: Erlangga.

Sugiyono. (2010). Metode Penelitian Kuantitatif, Kualitas, dan R&D (10th ed.). Bandung: Alfabeta.

Toaha, S. (2008). Model Dengan Tundaan Waktu, 4(2), 13–22.

Zulkarnaern, D. (2014). Proyeksi Populasi Penduduk Kota Bandung Menggunakan Model Pertumbuhan Populasi Verhulst dengan Memvariasikan Interval Pengambilan Sampel. In Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami) (Vol. VIII, pp. 159–181).

Published
2021-03-25
Section
Articles