Gabungan Himpunan α – Embedded

  • Albert Mario Kumanireng Universitas Nusa Cendana
  • Mira Wadu Universitas Nusa Cendana
  • Ariyanto Universitas Nusa Cendana
Keywords: α – embedded set, α functionally multiplicative class, α functionally additive class, α – separated

Abstract

Pada artikel ini, diteliti sifat – sifat himpunan  – embedded, yaitu gabungan himpunan-himpunan  – embedded. Hasil yang diperoleh menunjukkan bahwa gabungan dua himpunan di ruang metrik merupakan himpunan  – embedded. Lebih lanjut, terdapat ruang topologi dimana gabungan dua himpunan  – embedded tidak selalu  – embedded.  Oleh karena itu, kami memberikan syarat tambahan agar gabungan dua himpunan  – embedded merupakan himpunan  – embedded.

References

Blair, R. L. (1976). Spaces in Which Special Sets are z-Embedded. Canadian Journal of Mathematics, 28(4), 673–690. https://doi.org/10.4153/cjm-1976-068-9
Blair, R. L., & Hager, A. W. (1974). Extensions of zero-sets and of real-valued functions. Mathematische Zeitschrift, 136(1), 41–52. https://doi.org/10.1007/BF01189255
Dugundji, J. (1966). Topology. Allyn and Bacon, Inc.
Engelking, R. (1989). General topology (Rev. and completed ed). Heldermann.
Green, J. W. (1972). Filter Characterizations of C- and C ∗ -Embeddings. Proceedings of the American Mathematical Society, 35(2), 574. https://doi.org/10.2307/2037650
Hart, K. P., Nagata, J., & Vaughan, J. E. (2004). Encyclopedia of general topology (1st ed). Elsevier/North-Holland.
Karlova, O. (2014). On α-embedded sets and extension of mappings (No. arXiv:1407.6155). arXiv. https://doi.org/10.48550/arXiv.1407.6155
Kumanireng, A. M., & Zulijanto, A. (2023). Sifat-sifat Fungsi Terfragmentasi dan Fungsi Terfragmentasi Terhitung Fungsional. Jurnal Matematika Integratif, 19(1), 57. https://doi.org/10.24198/jmi.v19.n1.45047.55-66
Kuratowski, K., & Jaworowski, J. (1966). Topology (Vol. 1). PWN – Polish Scientific Publishers / Academic Press.
Published
2025-09-17